The biochemical function of the Laforin-like dual-specific phosphatase AtSEX4 (EC 3.1.3.48) has been studied. Crystalline maltodextrins representing the A-or the B-type allomorph were prephosphorylated using recombinant glucan, water dikinase (StGWD) or the successive action of both plastidial dikinases (StGWD and AtPWD). AtSEX4 hydrolyzed carbon 6-phosphate esters from both the prephosphorylated A-and B-type allomorphs and the kinetic constants are similar. The phosphatase also acted on prelabeled carbon-3 esters from both crystalline maltodextrins. Similarly, native starch granules prelabeled in either the carbon-6 or carbon-3 position were also dephosphorylated by AtSEX4. The phosphatase did also hydrolyze phosphate esters of both prephosphorylated maltodextrins when the (phospho)glucans had been solubilized by heat treatment. Submillimolar concentrations of nonphosphorylated maltodextrins inhibited AtSEX4 provided they possessed a minimum of length and had been solubilized. As opposed to the soluble phosphomaltodextrins, the AtSEX4-mediated dephosphorylation of the insoluble substrates was incomplete and at least 50% of the phosphate esters were retained in the pelletable (phospho)glucans. The partial dephosphorylation of the insoluble glucans also strongly reduced the release of nonphosphorylated chains into solution. Presumably, this effect reflects fast structural changes that following dephosphorylation occur near the surface of the maltodextrin particles. A model is proposed defining distinct stages within the phosphorylation/ dephosphorylation-dependent transition of a-glucans from the insoluble to the soluble state.The metabolism of starch, the most prominent storage carbohydrate in plants, is assumed to require approximately 30 to 40 distinct (iso)enzymes (Deschamps et al., 2008), but, presumably, the list of the starch-related proteins is not yet complete. Several novel proteins (and protein functions) essential for the normal starch metabolism have recently been identified among which are two a-glucan phosphorylating dikinases. One dikinase (glucan, water dikinase [GWD], EC 2.7.9.4) utilizes ATP as dual phosphate donor and esterifies the C6 position of amylopectin-related glucosyl residues, whereas the other dikinase (phosphoglucan, water dikinase [PWD], EC 2.7.9.5) selectively transfers the b-phosphate group from ATP to the C3 position of glucosyl residues (Ritte et al., 2006).Two other previously unknown starch-related enzymes were designated as SEX4 protein (EC 3