Exhaustive experimental annotation of the effect of all known protein variants remains daunting and expensive, stressing the need for scalable effect predictions. We introduce VespaG, a blazingly fast single amino acid variant effect predictor, leveraging embeddings of protein Language Models as input to a minimal deep learning model. To overcome the sparsity of experimental training data, we created a dataset of 39 million single amino acid variants from the human proteome applying the multiple sequence alignment-based effect predictor GEMME as a pseudo standard-of-truth. Assessed against the ProteinGym Substitution Benchmark (217 multiplex assays of variant effect with 2.5 million variants), VespaG achieved a mean Spearman correlation of 0.48 +/- 0.01, matching state-of-the-art methods such as GEMME, TranceptEVE, PoET, AlphaMissense, and VESPA. VespaG reached its top-level performance several orders of magnitude faster, predicting all mutational landscapes of the human proteome in 30 minutes on a consumer laptop (12-core CPU, 16 GB RAM).