Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Photosynthetie water oxidation is unique to plants and cyanobacteria, it occurs in thylakoid membranes. The components associated with this process include: a reaction center polypeptide, having a molecular weight (Mr) of 47-50 kilodaltons (kDa), containing a reaction center chlorophyll a labeled as P680, a plastoquinol(?)-electron donor Z, a primary electron acceptor pheophytin, and a quinone electron acceptor QA; three 'extrinsic' polypeptides having Mr of approximately 17 kDa, 23 kDa, and 33 kDa; and, in all likelihood, an approximately 34 kDa 'intrinsic' polypeptide associated with manganese (Mn) atoms. In addition, chloride and calcium ions appear to be essential components for water oxidation. Photons, absorbed by the so-called photosystem II, provide the necessary energy for the chemical oxidation-reduction at P680; the oxidized P680 (P680(+)), then, oxidizes Z, which then oxidizes the water-manganese system contained, perhaps, in a protein matrix. The oxidation of water, leading to O2 evolution and H(+) release, requires four such independent acts, i.e., there is a charge accumulating device (the so-called S-states). In this minireview, we have presented our current understanding of the reaction center P680, the chemical nature of Z, a possible working model for water oxidation, and the possible roles of manganese atoms, chloride ions, and the various polypeptides, mentioned above. A comparison with cytochrome c oxidase, which is involved in the opposite process of the reduction of O2 to H2O, is stressed.This minireview is a prelude to the several minireviews, scheduled to be published in the forthcoming issues of Photosynthesis Research, including those on photosystem II (by H.J. van Gorkom); polypeptides of the O2-evolving system (by D.F. Ghanotakis and C.F. Yocum); and the role of chloride in O2 evolution (by S. Izawa).
Photosynthetie water oxidation is unique to plants and cyanobacteria, it occurs in thylakoid membranes. The components associated with this process include: a reaction center polypeptide, having a molecular weight (Mr) of 47-50 kilodaltons (kDa), containing a reaction center chlorophyll a labeled as P680, a plastoquinol(?)-electron donor Z, a primary electron acceptor pheophytin, and a quinone electron acceptor QA; three 'extrinsic' polypeptides having Mr of approximately 17 kDa, 23 kDa, and 33 kDa; and, in all likelihood, an approximately 34 kDa 'intrinsic' polypeptide associated with manganese (Mn) atoms. In addition, chloride and calcium ions appear to be essential components for water oxidation. Photons, absorbed by the so-called photosystem II, provide the necessary energy for the chemical oxidation-reduction at P680; the oxidized P680 (P680(+)), then, oxidizes Z, which then oxidizes the water-manganese system contained, perhaps, in a protein matrix. The oxidation of water, leading to O2 evolution and H(+) release, requires four such independent acts, i.e., there is a charge accumulating device (the so-called S-states). In this minireview, we have presented our current understanding of the reaction center P680, the chemical nature of Z, a possible working model for water oxidation, and the possible roles of manganese atoms, chloride ions, and the various polypeptides, mentioned above. A comparison with cytochrome c oxidase, which is involved in the opposite process of the reduction of O2 to H2O, is stressed.This minireview is a prelude to the several minireviews, scheduled to be published in the forthcoming issues of Photosynthesis Research, including those on photosystem II (by H.J. van Gorkom); polypeptides of the O2-evolving system (by D.F. Ghanotakis and C.F. Yocum); and the role of chloride in O2 evolution (by S. Izawa).
The linear, four-step oxidation of water to molecular oxygen by photosystem II requires cooperation between redox reactions driven by light and a set of redox reactions involving the S-states within the oxygen-evolving complex. The oxygenevolving complex is a highly ordered structure in which a number of polypeptides interact with one another to provide the appropriate environment for productive binding of cofactors such as manganese, chloride and calcium, as well as for productive electron transfer within the photoact. A number of recent advances in the knowledge of the polypeptide structure of photosystem II has revealed a correlation between primary photochemical events and a 'core' complex of five hydrophobic polypeptides which provide binding sites for chlorophyll a, pheophytin a, the reaction center chlorophyll (P680), and its immediate donor, denoted Z. Although the 'core' complex of photosystem II is photochemically active, it does not possess the capacity to evolve oxygen. A second set of polypeptides, which are water-soluble, have been discovered to be associated with photosystem II; these polypeptides are now proposed to be the structural elements of a special domain which promotes the activities of the loosely-bound cofactors (manganese, chloride, calcium) that participate in oxygen evolution activity. Two of these proteins (whose molecular weights are 23 and 17 kDa) can be released from photosystem II without concurrent loss of functional manganese; studies on these proteins and on the membranes from which they have been removed indicate that the 23 and 17 kDa species from part of the structure which promotes retention of chloride and calcium within the oxygen-evolving complex. A third water-soluble polypeptide of molecular weight 33 kDa is held to the photosystem II 'core' complex by a series of forces which in some circumstances may include ligation to manganese. The 33 kDa protein has been studied in some detail and appears to promote the formation of the environment which is required for optimal participation by manganese in the oxygen evolving reaction. This minireview describes the polypeptides of photosystem II, places an emphasis on the current state of knowledge concerning these species, and discusses current areas of uncertainty concerning these important polypeptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.