Plants developed a diverse battery of defense mechanisms in response to continual challenges by a broad spectrum of pathogenic microorganisms. Their defense arsenal includes inhibitors of cell wall-degrading enzymes, which hinder a possible invasion and colonization by antagonists. The structure of Triticum aestivum xylanase inhibitor-I (TAXI-I), a first member of potent TAXI-type inhibitors of fungal and bacterial family 11 xylanases, has been determined to 1.7-Å resolution. Surprisingly, TAXI-I displays structural homology with the pepsin-like family of aspartic proteases but is proteolytically nonfunctional, because one or more residues of the essential catalytical triad are absent. The structure of the TAXI-I⅐Aspergillus niger xylanase I complex, at a resolution of 1.8 Å, illustrates the ability of tight binding and inhibition with subnanomolar affinity and indicates the importance of the C-terminal end for the differences in xylanase specificity among different TAXI-type inhibitors.