Implantable cardiac defibrillators (ICDs) are recommended to prevent the risk of sudden cardiac death. However, shocks are associated with an increased mortality with a dose response effect, and a strategy of reducing electrical therapy burden improves the prognosis of implanted patients. We review the mechanisms of defibrillation and its consequences, including cell damage, metabolic remodeling, calcium metabolism anomalies, and inflammatory and pro-fibrotic remodeling. Electrical shocks do save lives, but also promote myocardial stunning, heart failure, and pro-arrhythmic effects as seen in electrical storms. Limiting unnecessary implantations and therapies and proposing new methods of defibrillation in the future are recommended.