Determination of differentially expressed protein profile is necessary to understand the host response to viral infection. Proteomics can be applied as a tool to examine white shrimp Litopenaeus vannamei molecular responses against white spot syndrome virus (WSSV) infection, thus enabling development of effective strategies to reduce their impact on farms. In the present study, specific pathogen-free shrimp was tested against WSSV infection under several time intervals. Shrimps were submitted to a viral load of with 5.5 9 10 6 viral copies in 100 lL/shrimp. The monitoring of infection was performed in intervals of 6, 12, 24, 48 and 72 h after infection. The analysis was realized using 2-DE, and differentially expressed proteins were identified by MALDI-TOF mass spectrometry (MS) peptide mass fingerprint (PMF). Between the differentially expressed proteins found in the infected animals, the most important were identified as caspase-2, ubiquitin and F1-ATP synthase. They are interesting candidates for biomarkers because could be related to the beginning of apoptosis process. The differentially expressed protein profile creates a new paradigm in the analysis of L. vannamei shrimp molecular response to WSSV infection and in virus-host relationship. Furthermore, it proposes potential biomarkers that allow strategies both selecting less susceptible individuals and reducing the impact of viruses on farms.