Proteins carrying sulfated glycans (i.e., sulfated glycoproteins) are known to be associated with diseases, such as cancer, cystic fibrosis, and osteoarthritis. Sulfated glycoproteins, however, have not been isolated or characterized from complex biological samples due to lack of appropriate tools for their enrichment. Here, we describe a method to identify and characterize sulfated glycoproteins that are involved in chemical modifications to control the molecular charge of the peptides. In this method, acetohydrazidation of carboxyl groups was performed to accentuate the negative charge of the sulfate group, and Girard's T modification of aspartic acid was performed to assist in protein identification by MS tagging. Using this approach, we identified and characterized the sulfated glycoproteins: Golgi membrane protein 1, insulin-like growth factor binding protein-like 1, and amyloid beta precursor-like protein 1 from H2171 cells, a small cell lung carcinoma cell line. These sulfated glycoproteins carry a complex-type N-glycan with a core fucose and 4'-O-sulfated LacdiNAc as the major glycan.