f Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and ⌬lpp ⌬msbB double mutants. While the ⌬ail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the ⌬lpp ⌬ail double mutant and the ⌬lpp ⌬msbB ⌬ail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD 50 ) equivalent to 6,800 LD 50 s of WT CO92. The mutant-infected animals developed balanced T H 1-and T H 2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD 50 s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the ⌬lpp ⌬msbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a mouse model while retaining the required immunogenicity needed for subsequent protection against infection. P athogenic yersiniae lead to two types of diseases: yersiniosis (typified by gastroenteritis caused by Yersinia enterocolitica and Y. pseudotuberculosis) (1) and plague (evoked by Y. pestis) (2, 3). Y. pestis has evolved from Y. pseudotuberculosis within the last 20,000 years by acquiring additional plasmids and pathogenicity islands as well as by deactivating some genes (4-6). This evolutionary adaptation allowed the plague bacterium to maintain a dual life-style in fleas and rodents/mammals and conferred the ability to survive in the blood instead of the intestine (3). Plague manifests itself in three forms: bubonic (acquired from an infected rodent through a flea bite), pneumonic (acquired either directly by aerosol transmission from an infected host's lungs through respiratory droplets or secondarily from bubonic plague), and septicemic (severe bacteremia either directly due to a flea bite or subsequent to bubonic or pneumonic plague) (2). T...