Every year, millions of births worldwide are complicated by prematurity or difficult post-term deliveries, resulting in a high incidence of perinatal mortality and morbidity. Our poor understanding of human parturition is a key reason for our inability to improve the management of preterm and post-term birth. In this study, we used proteomic techniques to look into protein changes in placental blood plasma obtained from women before or after spontaneous or induced labour, with vaginal or caesarean section deliveries. Our aim was to understand the basic mechanisms of human parturition regardless of whether the signals that trigger labour are of maternal and/or fetal origin. We found proteins from 33 genes with significantly altered expression profiles in relation to mode of labour and delivery. Most changes in labour occurred in proteins associated with 'immune and defence responses'. Although the signal transduction and regulation of these pathways varied among modes of delivery, hepatocyte nuclear factor 1 homeobox A emerged as a shared protein in the mechanism of labour. Moreover, several apolipoproteins such as apolipoprotein A-IV and APOE were found to change with labour, and these changes were also confirmed in maternal plasma. This study has identified significant protein changes in placental intervillous plasma with labour and has revealed several pathways related to human parturition.