Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Megakaryocytes (MKs) are large, polyploid cells that contribute to bone marrow homeostasis through the secretion of cytokines such as transforming growth factor β1 (TGFβ1). During neoplastic transformation, immature MKs accumulate in the bone marrow where they induce fibrotic remodeling ultimately resulting in myelofibrosis. Current treatment strategies aim to prevent MK hyperproliferation, however, little is understood about the potential of targeting dysregulated cytokine secretion from neoplastic MKs as a novel therapeutic avenue. Unconventional secretion of TGFβ1 as well as interleukin 1β (IL1β) via secretory autophagy occurs in cells other than MKs, which prompted us to investigate whether similar mechanisms are utilized by MKs. Here, we identified that TGFβ1 strongly co-localized with the autophagy marker light chain 3B in native MKs. Disrupting secretory autophagy by inhibiting the small GTPase RhoA or its downstream effector Rho kinase (ROCK) markedly reduced TGFβ1 and IL1β secretion in vitro. In vivo, conditional deletion of the essential autophagy gene Atg5 from the hematopoietic system limited megakaryocytosis and aberrant cytokine secretion in an MPLW515L-driven transplant model. Similarly, mice with a selective deletion of Rhoa from the MK and platelet lineage were protected from progressive fibrosis. Finally, disease hallmarks in MPLW515L-transplanted mice were attenuated upon treatment with the autophagy inhibitor hydroxychloroquine or the ROCK inhibitor Y27632, either as monotherapy or in combination with the JAK2 inhibitor ruxolitinib. Overall, our data indicate that aberrant cytokine secretion is dependent on secretory autophagy downstream of RhoA, targeting of which represents a novel therapeutic avenue in the treatment of myelofibrosis.
Megakaryocytes (MKs) are large, polyploid cells that contribute to bone marrow homeostasis through the secretion of cytokines such as transforming growth factor β1 (TGFβ1). During neoplastic transformation, immature MKs accumulate in the bone marrow where they induce fibrotic remodeling ultimately resulting in myelofibrosis. Current treatment strategies aim to prevent MK hyperproliferation, however, little is understood about the potential of targeting dysregulated cytokine secretion from neoplastic MKs as a novel therapeutic avenue. Unconventional secretion of TGFβ1 as well as interleukin 1β (IL1β) via secretory autophagy occurs in cells other than MKs, which prompted us to investigate whether similar mechanisms are utilized by MKs. Here, we identified that TGFβ1 strongly co-localized with the autophagy marker light chain 3B in native MKs. Disrupting secretory autophagy by inhibiting the small GTPase RhoA or its downstream effector Rho kinase (ROCK) markedly reduced TGFβ1 and IL1β secretion in vitro. In vivo, conditional deletion of the essential autophagy gene Atg5 from the hematopoietic system limited megakaryocytosis and aberrant cytokine secretion in an MPLW515L-driven transplant model. Similarly, mice with a selective deletion of Rhoa from the MK and platelet lineage were protected from progressive fibrosis. Finally, disease hallmarks in MPLW515L-transplanted mice were attenuated upon treatment with the autophagy inhibitor hydroxychloroquine or the ROCK inhibitor Y27632, either as monotherapy or in combination with the JAK2 inhibitor ruxolitinib. Overall, our data indicate that aberrant cytokine secretion is dependent on secretory autophagy downstream of RhoA, targeting of which represents a novel therapeutic avenue in the treatment of myelofibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.