Metallomics is the new paradigm about the metallobiomolecules related to living organisms, considering the interactions between toxic and essential metals, transport through biological fluids, passing across biological membranes and interfaces, synergic and antagonist actions among metal species, and alterations in metabolic pathways triggered by overexpression or inhibition of these metallobiomolecules. These challenging studies require the development of new analytical approaches in order to get suitable information of these species close to their native environment which has promoted the application of new tools based in mass spectrometry under the double focus of elemental (ICP-MS) and molecular (Qq-TOF-MS) mass spectrometry, generally arranged with chromatography in multidimensional platforms. The driving force for the design of these new analytical instrumental arrangements is the analyst imagination who adapts the new metallomic methodology to the new problems. In this work the most recent metallomic approaches proposed have been considered, deepening their application to the most frequent problems related to metal toxicity in environmental issues, such as exposure experiments of mice to toxic metals, interactions and homeostasis of metals, metal imaging, metabolic alterations caused by metallobiomolecules over- or down-expressed, and more interestingly real-life consequences of metal species expression in environmental field studies. In this way, the application of two-dimensional chromatographic approaches with ICP-MS detection, the use of multidimensional chromatography-column-switching-ICP-MS devices, metal imaging with LA-ICP-MS, combined application of metallomics and metabolomics for environmental toxicological appraisal, and the application of these metallomic techniques in environmental field studies have been reviewed.