Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H 2 O 2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato's response to chilling stress.