The aim of this study was to compare the kinetic response of middle cerebral artery blood velocity (MCAv) to moderate and heavy-intensity cycling in adults, and explore the relationship between maximal oxygen uptake (V̇O2max) and MCAv kinetics. Seventeen healthy adults (23.8±2.4 years, 9 females) completed a ramp incremental test to exhaustion on a cycle ergometer to determine V̇O2max and the gas exchange threshold (GET). Across six separate visits, participants completed three 6-minute transitions at a moderate-intensity (90% GET) and three at a heavy-intensity (40% of the difference between GET and V̇O2max). Bilateral MCAv was measured using transcranial Doppler ultrasonography and analysed using a mono-exponential model with a time delay. The time constant (τ) of the MCAv response was not different between moderate- and heavy-intensity cycling (25±10 vs. 26±8 s, P=0.82), as was the time delay (29±11 vs. 29±10 s, P=0.95). The amplitude of the exponential increase in MCAv from baseline was greater during heavy (23.9±10.0 cm.s-1, 34.1±14.4%) compared to moderate (12.7±4.4 cm.s-1, 18.7±7.5%) intensity cycling (P<0.01). Following the exponential increase, a greater fall in MCAv was observed during heavy compared to moderate-intensity exercise (9.5±6.9 vs 2.8±3.8 cm.s-1, P<0.01). MCAv after 6 minutes of exercise remained elevated during heavy compared to moderate-intensity exercise (85.2±9.6 vs. 79.3±7.7cm.s-1, P≤0.01). V̇O2max was not correlated with MCAv τ or amplitude (r=0.11-0.26, P>0.05). These data suggest that the intensity of constant-work rate exercise influences the amplitude, but not time-based, response parameters of MCAv in healthy adults, and found no relationship between cardiorespiratory fitness and MCAv kinetics.