2022
DOI: 10.1186/s41512-022-00127-9
|View full text |Cite
|
Sign up to set email alerts
|

Protocol for a systematic review and meta-analysis of the diagnostic accuracy of artificial intelligence for grading of ophthalmology imaging modalities

Abstract: Background With the rise of artificial intelligence (AI) in ophthalmology, the need to define its diagnostic accuracy is increasingly important. The review aims to elucidate the diagnostic accuracy of AI algorithms in screening for all ophthalmic conditions in patient care settings that involve digital imaging modalities, using the reference standard of human graders. Methods This is a systematic review and meta-analysis. A literature search will b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 23 publications
0
3
0
Order By: Relevance
“…QA1 QA2 QA3 QA4 Total P1 Abdellatif et al [16] 1 0 0 1 2 P2 Khan et al [17] 1 1 1 0.5 3.5 P3 Shaikh et al [18] 0 1.5 1 0 2.5 P4 Zarembo et al [19] 0.5 0.5 0.5 0.5 2 P5 Cao et al [20] 1 0.5 0 0 1.5 P6 Yang et al [21] 1 0.5 1 0.5 3 P7 Cote et al [22] 1 1 1 1 4 P8 Xu et al [23] 0.5 1 1 0.5 3 P9 Dey et al [24] 1 1 0.5 0 2.5 P10 Zanca et al [25] 1 0 1 1 3 P11 Al-Dasuqi et al [26] 0.5 1 0.5 0.5 2.5 P12 O'Hare et al [27] 1 1 1 0.5 3.5 P13 Druffel et al [28] 0 0 1 1 2 P14 Perkusich et al [29] 0.5 1 1 1 3.5 P15 Vinsard et al [30] 0.5 0 0.5 1 2 P16 Beegle et al [31] 1 0 1 0.5 2.5 P17 Salahirad et al [32] 1 1 0.5 0.5 3 P18 Dlamini et al [33] 0.5 0.5 0.5 0.5 2 P19 Cross et al [34] 0.5 1 1 1 3.5 P20 Malamateniou et al [35] 0 0 1 1 2 P21 Lenarduzzi et al [7] 1 0.5 0.5 0.5 2.5 P22 Sikorska et al [36] 0 1 0 1 2 P23 Field et al [37] 1 1 0 1 3 P24 Gao et al [38] 0.5 0 0 0 0.5 P25 Khanagar et al [39] 1 0 0 1 2 P26 Shafiq et al [40] 1 0.5 1 1 3.5 P27 Waade et al [41] 1 1 1 0.5 3.5 P28 Felderer et al [42] 1 0 0 0 1 P29 Ji et al [43] 0 0 1 1 2 P30 Harman et al [44] 1 0.5 1 1 3.5 P31 Shehab et al [45] 0 0.5 0.5 0.5 1.5 P32 Rana et al [46] 1 1 1 0 3 P33 Huang et al [47] 1 0.5 0.5 0.5 2.5 P34 Shakeel et al [48] 1 0.5 1 1 3.5 P35 Zhou et al [49] 0.5 0.5 0 0 1 P36 Sayago-Heredia et al…”
Section: Appendix Scores -Quality Assessmentmentioning
confidence: 99%
“…QA1 QA2 QA3 QA4 Total P1 Abdellatif et al [16] 1 0 0 1 2 P2 Khan et al [17] 1 1 1 0.5 3.5 P3 Shaikh et al [18] 0 1.5 1 0 2.5 P4 Zarembo et al [19] 0.5 0.5 0.5 0.5 2 P5 Cao et al [20] 1 0.5 0 0 1.5 P6 Yang et al [21] 1 0.5 1 0.5 3 P7 Cote et al [22] 1 1 1 1 4 P8 Xu et al [23] 0.5 1 1 0.5 3 P9 Dey et al [24] 1 1 0.5 0 2.5 P10 Zanca et al [25] 1 0 1 1 3 P11 Al-Dasuqi et al [26] 0.5 1 0.5 0.5 2.5 P12 O'Hare et al [27] 1 1 1 0.5 3.5 P13 Druffel et al [28] 0 0 1 1 2 P14 Perkusich et al [29] 0.5 1 1 1 3.5 P15 Vinsard et al [30] 0.5 0 0.5 1 2 P16 Beegle et al [31] 1 0 1 0.5 2.5 P17 Salahirad et al [32] 1 1 0.5 0.5 3 P18 Dlamini et al [33] 0.5 0.5 0.5 0.5 2 P19 Cross et al [34] 0.5 1 1 1 3.5 P20 Malamateniou et al [35] 0 0 1 1 2 P21 Lenarduzzi et al [7] 1 0.5 0.5 0.5 2.5 P22 Sikorska et al [36] 0 1 0 1 2 P23 Field et al [37] 1 1 0 1 3 P24 Gao et al [38] 0.5 0 0 0 0.5 P25 Khanagar et al [39] 1 0 0 1 2 P26 Shafiq et al [40] 1 0.5 1 1 3.5 P27 Waade et al [41] 1 1 1 0.5 3.5 P28 Felderer et al [42] 1 0 0 0 1 P29 Ji et al [43] 0 0 1 1 2 P30 Harman et al [44] 1 0.5 1 1 3.5 P31 Shehab et al [45] 0 0.5 0.5 0.5 1.5 P32 Rana et al [46] 1 1 1 0 3 P33 Huang et al [47] 1 0.5 0.5 0.5 2.5 P34 Shakeel et al [48] 1 0.5 1 1 3.5 P35 Zhou et al [49] 0.5 0.5 0 0 1 P36 Sayago-Heredia et al…”
Section: Appendix Scores -Quality Assessmentmentioning
confidence: 99%
“…Therefore, to evaluate an AI application, it is essential to use evidence-based medicine principles -a standard that is only sometimes met [26] . Ethical Aspects, Translation, and Conclusion Given the rise of AI in medicine and ophthalmology, defining its accuracy and reliability will guide future research in this area and enhance its real-life adaption [27] . The potential challenges with DL application in ophthalmology include clinical and technical challenges, data quality, explain ability of the algorithm results, medicolegal issues, and physician and patient acceptance of the AI "black box" algorithms.…”
Section: Artificial Intelligence In Ophthalmologymentioning
confidence: 99%
“…Therefore, to evaluate an AI application, it is essential to use evidence-based medicine principles -a standard that is only sometimes met [26] . Ethical Aspects, Translation, and Conclusion Given the rise of AI in medicine and ophthalmology, defining its accuracy and reliability will guide future research in this area and enhance its real-life adaption [27] . The potential challenges with DL application in ophthalmology include clinical and technical challenges, data quality, explain ability of the algorithm results, medicolegal issues, and physician and patient acceptance of the AI "black box" algorithms.…”
Section: Artificial Intelligence In Ophthalmologymentioning
confidence: 99%