Aiming at the fundamental understanding of solvent effects in amphiphilic polymer systems, we considered poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO-PPO-PEO) block copolymers in water mixed with an ionic liquid—ethylammonium nitrate (EAN), 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), or 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4)—and we investigated the hexagonal lyotropic liquid crystal structures by means of small-angle X-ray scattering (SAXS). At 50% polymer, the hexagonal structure (cylinders of self-assembled block copolymer) was maintained across the solvent mixing ratio. The effects of the ionic liquids were reflected in the characteristic length scales of the hexagonal structure and were interpreted in terms of the location of the ionic liquid in the self-assembled block copolymer domains. The protic ionic liquid EAN was evenly distributed within the aqueous domains and showed no affinity for the interface, whereas BMIMPF6 preferred to swell PEO and was located at the interface so as to reduce contact with water. BMIMBF4 was also interfacially active, but to a lesser extent.