Abstract. A recent paper (Healey et al., J. Nonlin. Sci., 2013, 23, 777-805.) predicted the disappearance of the stretch-induced wrinkled pattern of thin, clamped, elastic sheets by numerical simulation of the Föppl-von Kármán equations extended to the finite in-plane strain regime. It has also been revealed that for some aspect ratios of the rectangular domain wrinkles do not occur at all regardless of the applied extension. To verify these predictions we carried out experiments on thin (20 µm thick adhesive covered), previously prestressed elastomer sheets with different aspect ratios under displacement controlled pull tests. On one hand the the adjustment of the material properties during prestressing is highly advantageous as in targeted strain regime the film becomes substantially linearly elastic (which is far not the case without prestress). On the other hand a significant, non-ignorable orthotropy develops during this first extension. To enable quantitative comparisons we abandoned the assumption about material isotropy inherent in the original model and derived the governing equations for an orthotropic medium. In this way we found good agreement between numerical simulations and experimental data.Analysis of the negativity of the second Piola-Kirchhoff stress tensor revealed that the critical stretch for a bifurcation point at which the wrinkles disappear must be finite for any aspect ratio. On the contrary there is no such a bound for the aspect ratio as a bifurcation parameter. Physically this manifests as complicated wrinkled patterns with more than one highly wrinkled zones on the surface in case of elongated rectangles. These arrangements have been found both numerically and experimentally. These findings also support the new, finite strain model, since the Föppl-von Kármán equations based on infinitesimal strains do not exhibit such a behavior.