Signals from global navigation satellite systems (GNSS) can be utilized as signals of opportunity in remote sensing applications. Geophysical properties of the earth surface can be detected and monitored by processing the back-scattered GNSS signals from the ground. In the literature, several airborne GNSS-based passive radar experiments have been successfully demonstrated. With the advancements in small unmanned aerial vehicles (UAVs) and their applications for environmental monitoring, we want to investigate whether GNSS-based passive radar can provide valuable geospatial information from such platforms. Low-cost GNSS reflectometry sensors, developed using commercial of the shelf components, can be mounted onboard UAVs and flown to sense environmental parameters. This paper presents the results of a preliminary study to investigate the feasibility of utilizing data collected by UAV-based GNSS-R sensors to detect surface water for a potential application in supporting flood monitoring operations. The study was conducted in the area surrounding the Avigliana lakes in Northern Italy. The results show the possibility of detecting small water surfaces with few tens of meters resolution, and estimating the area of the lake surface with 92% accuracy. Furthermore, it is proved through simulations that the use of multi-GNSS increases this accuracy to about 99%.