To better understand the molecular basis of cancer, the NCI's Clinical Proteomics Tumor Analysis Consortium (CPTAC) has been performing comprehensive large-scale proteogenomic characterizations of multiple cancer types. Gene and protein regulatory networks are subsequently being derived based on these proteogenomic profiles, which serve as tools to gain systems-level understanding of the molecular regulatory factories underlying these diseases. On the other hand, it remains a challenge to effectively visualize and navigate the resulting network models, which capture higher order structures in the proteogenomic profiles. There is a pressing need to have a new open community resource tool for intuitive visual exploration, interpretation, and communication of these gene/protein regulatory networks by the cancer research community. In this work, ProNetView-ccRCC (http://ccrcc.cptac-network-view.org/), an interactive web-based network exploration portal for investigating phosphopeptide co-expression network inferred based on the CPTAC clear cell renal cell carcinoma (ccRCC) phosphoproteomics data is introduced. ProNetView-ccRCC enables quick, user-intuitive visual interactions with the ccRCC tumor phosphoprotein co-expression network comprised of 3614 genes, as well as 30 functional pathway-enriched network modules. Users can interact with the network portal and can conveniently query for association between abundance of each phosphopeptide in the network and clinical variables such as tumor grade. Recent advances in molecular profiling technologies [1,2] enable the large-scale integrative proteomic and genomic (proteogenomic) studies of cancers. For example, the National Cancer Institute's Clinical Proteomics Tumor Analysis Consortium (CPTAC) has recently performed comprehensive proteogenomic characterizations of tumor samples from breast, [3,4] colon, [5]