The Ela Mountain area is located at the easternmost point of the East Kunlun Orogen, in which voluminous igneous rocks developed in the Triassic period, and it is a good place to investigate the tectonic evolution of the Paleo-Tethys Ocean. In this study, petrological, geochemical, zircon U-Pb geochronology and zircon Hf isotope studies were carried out on the volcanic rocks in the Ela Mountain area. Dacite (239.3 ± 1.4 Ma) exhibits calc-alkaline I-type characteristics, and rhyolite (237.8 ± 2.1 Ma) is similar to high-K calc-alkaline highly fractionated I-type volcanic rock. The petrogenesis shows that both rhyolite and dacite originated from the partial melting of the mafic lower crust of the Mesoproterozoic under relatively high temperature and low pressure. Dacite and rhyolite were derived from the same or similar parent magma, and they are volcanic rocks with different differentiation degrees formed in the same magmatic pulse activity. Differing from rhyolite and dacite, basaltic andesite shows a relatively young age (234 ± 1.2 Ma), mainly originating from the partial melting of the lithospheric mantle modified by subducted slab-derived fluids; the magma was contaminated with a small amount of crustal source components and experienced the fractional crystallization of mafic minerals before the eruption to the surface. This study on the tectonic environment of these volcanic rocks shows that they were formed in the environment of slab failure in the late stage of syn-collision, and that they are different types of volcanic rocks from different sources under similar tectonic environments. The volcanic rocks of the Ela Mountain area in this contribution provide important evidence for Middle Triassic to Late Triassic syn-collisional magmatism in the slab failure stages. The results of this study constrain the lower age limit of the closure of the Paleo-Tethys Ocean and the initial time of extension of the late stage of syn-collision, providing important information regarding regional tectonic evolution processes and volcanic activity history. They can be applied to regional tectonic evolution, petrology, volcanic stratigraphy and mineral deposits related to volcanic rocks.