“…These results rely on finite state space or exact linear approximations. Recently, sample efficient algorithms under non-linear function approximation settings are proposed [Wen and Van Roy, 2017, Dann et al, 2018, Du et al, 2019b, Dong et al, 2020, Wang et al, 2020a, Dong et al, 2021. Those algorithms are based on Bellman rank [Jiang et al, 2017], eluder dimension [Russo and Van Roy, 2013b], neural tangent kernel [Jacot et al, 2018, Du et al, 2019a, or sequential Rademacher complexity [Rakhlin et al, 2015a,b].…”