Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
REPORT DATE
DEC 20122. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 Copyright © 2012, by the author(s).
TITLE AND SUBTITLE
On-board Model Predictive Control of a QuadrotorAll rights reserved.Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.
AcknowledgementThe This report describes work in applying model predictive control (MPC) techniques to the control of quadrotor helicopters, a type of micro aerial vehicle (MAV) platform that has gained great popularity in recent years both in research and commercial/military settings. MPC is a form of optimal control which is attractive in part because it allows engineering requirements to be addressed directly in the design of the controller in terms of costs to be minimized and constraints to be satisfied in an optimization problem. Furthermore, for many engineering problems of interest, the optimization to be performed is convex, meaning that a global optimum can be efficiently computed. MPC first found broad early application in the process industry, where the typically longer time scales were compatible with the time necessary to solve the optimization problem. More recently with both the exponential increase in available computing power and the development of more efficient solution techniques, MPC has become an option for control of systems with faster dynamics, such as quadrotors.We bring together results from our application of two distinct variants of MPC. The common thread is that we seek advanced control algorithms that can be applied to an autonomous MAV like the quadrotor, ideally without requiring any external resources, i.e. we aim to perform all computations required for real-time closed-loop control on-board the vehicle.The first variant is known as explicit MPC, where in a sense the heavy numerical work of solving optimization problems is done a priori and off-line, such that the on-line implementat...