Abstract. The evolution of orogenic wedges can be determined
through stratigraphic and thermochronological analysis. We used apatite
fission-track (AFT) and apatite and zircon (U–Th–Sm) / He (AHe and ZHe)
low-temperature thermochronology to assess the thermal evolution of the
Ukrainian Carpathians, a prime example of an orogenic wedge forming in a
retreating subduction zone setting. Whereas most of our AHe ages are reset
by burial heating, 8 out of 10 of our AFT ages are partially reset, and
none of the ZHe ages are reset. We inverse-modeled our thermochronology
data to determine the time–temperature paths of six of the eight nappes
composing the wedge. The models were integrated with burial diagrams derived
from the stratigraphy of the individual nappes, which allowed us to
distinguish sedimentary from tectonic burial. This analysis reveals that
accretion of successive nappes and their subsequent exhumation mostly
occurred sequentially, with an apparent increase in exhumation rate towards
the external nappes. Following a phase of tectonic burial, the nappes were
generally exhumed when a new nappe was accreted, whereas, in one case,
duplexing resulted in prolonged burial. An early orogenic wedge formed with
the accretion of the innermost nappe at 34 Ma, leading to an increase in
sediment supply to the remnant basin. Most of the other nappes were accreted
between 28 and 18 Ma. Modeled exhumation of the outermost nappe started at 12 Ma and was accompanied by out-of-sequence thrusting. The latter was linked
to emplacement of the wedge onto the European platform and consequent slab
detachment. The distribution of thermochronological ages across the wedge,
showing non-reset ages in both the inner and outer part of the belt,
suggests that the wedge was unable to reach dynamic equilibrium for a period
long enough to fully reset all thermochronometers. Non-reset ZHe ages
indicate that sediments in the inner part of the Carpathian embayment were
mostly supplied by the Inner Carpathians, while sediments in the outer part
of the basin were derived mostly from the Teisseyre–Tornquist Zone (TTZ) or
the southwestern margin of the East European Platform. Our results suggest
that during the accretionary phase, few sediments were recycled from the
wedge to the foredeep. Most of the sediments derived from the Ukrainian
Carpathian wedge were likely transported directly to the present pro- and
retro-foreland basins.