Geochemical and petrological studies of the well-preserved greywacke horizon of the 'Middle Aravalli Group' were carried out to constrain the early evolution of the Aravalli basin. Petrological and geochemical attributes of Middle Aravalli greywackes (MAGs) such as very poor sorting, high angularity of framework grains, presence of fresh plagioclase and Kfeldspars, variable Chemical Index of Alteration (CIA) index (46.7-74.5, avg. 61), and high Index of Compositional Variability (ICV) value (~1.05) suggest rapid physical erosion accompanying an active tectonic regime. The sediments record post-depositional K-metasomatism and extraneous addition of 0-25% (avg.~10%) K is indicated. Assuming close system behaviour of immobile elements during sedimentation, various diagnostic element ratios such as Th/Sc, La/Sc, Zr/ Sc, and Co/Th, Eu anomaly and rare earth element patterns of MAG suggest that the Archaean Banded Gneissic Complex (BGC) basement was not the major source of sediments. In conjunction with the dominant 1.8-1.6 Ga detrital zircon age peaks of Middle Aravalli clastic rocks, these data rather indicate that the sediments were derived from a young differentiated continental margin-type arc of andesite-dacite-rhyodacite composition. A highly fractionated mid-oceanic-ridge-basaltnormalized trace element pattern of MAGs, with characteristic enrichment of large-ion lithophile elements (LILEs), depletion of heavy rare earth elements, negative Nb-Ta, Ti and P anomalies, positive Pb anomaly, and distinctive Nb/Ta, Zr/Sm, Th/Yb, and Ta/Yb, Ce/Pb ratios envelop the composition of modern continental arc magmas (andesite-dacite) of the Andes, suggesting a subduction zone tectonic setting for precursor magma. High magnitude of LILE enrichment and high Th/Yb ratios in these sediments indicate that thick continental crust (~70 km) underlay the 'Middle Aravalli' continental arc, similar to the Central Volcanic Zone of the modern Andes. We propose that eastward subduction of Delwara oceanic crust beneath the BGC continent led to the formation of a continental volcanic arc, which supplied detritus to the forearc basin situated to the west. This model also explains the opening of linear ensialic basins in the Bhilwara terrain, such as in Rajpura-Dariba and Rampura-Agucha in a classical back-arc extension regime, similar to the Andean continental margin of the Mesozoic. On the basis of the recent 207 Pb/ 206 Pb detrital zircon age of Middle Aravalli sediment, a time frame between 1772 and 1586 Ma can be assigned for Middle Aravalli continental arc magmatism.