A regional ocean circulation model (ROMS) is used to simulate the Chinese land‐derived sediment transport in the Bohai Sea, Yellow Sea, and East China Sea (BYECS). The model includes the effect of currents, tides, and waves on the sediment transport and is used to study the pathway and dynamic mechanisms of the fine‐grain sediment transport from the Huanghe River (Yellow River), the Old Huanghe Delta, and the Changjiang River (Yangtze River) in the BYECS. The seasonal variability of the sediment transport in the BYECS and the sources of the Yellow Sea Trough mud patch, the mud patch southwest of Cheju Island, the mud patch offshore from the Zhejiang and Fujian provinces and the Okinawa Trough mud patch are discussed. The results show that the Huanghe River sediment can be transported to the Yellow Sea Trough, but little makes it to the outer shelf while the Old Huanghe Delta sediment is mainly transported to the Yellow Sea Trough. Most of the sediment from the Changjiang River mouth is carried to the mud patch off the coast of the Zhejiang and Fujian provinces but with part of this sediment also transported to the Yellow Sea Trough. The model shows that it is difficult to transport land‐derived sediment to the Okinawa Trough mud patch under normal conditions. The model also has difficulty accounting for the deposition of sediment in the region to the southwest of Cheju Island and offshore from the Zhejiang and Fujian provinces, an issue requiring further study.