Normal form bisimulation, also known as open bisimulation, is a coinductive technique for higher-order program equivalence in which programs are compared by looking at their essentially infinitary tree-like normal forms, i.e. at their Böhm or Lévy-Longo trees. The technique has been shown to be useful not only when proving metatheorems about λ-calculi and their semantics, but also when looking at concrete examples of terms. In this paper, we show that there is a way to generalise normal form bisimulation to calculi with algebraic effects,à la Plotkin and Power. We show that some mild conditions on monads and relators, which have already been shown to guarantee effectful applicative bisimilarity to be a congruence relation, are enough to prove that the obtained notion of bisimilarity, which we call effectful normal form bisimilarity, is a congruence relation, and thus sound for contextual equivalence. Additionally, contrary to applicative bisimilarity, normal form bisimilarity allows for enhancements of the bisimulation proof method, hence proving a powerful reasoning principle for effectful programming languages.