2018
DOI: 10.1186/s13660-017-1602-x
|View full text |Cite
|
Sign up to set email alerts
|

Proximal iteratively reweighted algorithm for low-rank matrix recovery

Abstract: This paper proposes a proximal iteratively reweighted algorithm to recover a low-rank matrix based on the weighted fixed point method. The weighted singular value thresholding problem gains a closed form solution because of the special properties of nonconvex surrogate functions. Besides, this study also has shown that the proximal iteratively reweighted algorithm lessens the objective function value monotonically, and any limit point is a stationary point theoretically.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?