2021
DOI: 10.48550/arxiv.2110.01761
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Proxy-bridged Image Reconstruction Network for Anomaly Detection in Medical Images

Abstract: Anomaly detection in medical images refers to the identification of abnormal images with only normal images in the training set. Most existing methods solve this problem with a self-reconstruction framework, which tends to learn an identity mapping and reduces the sensitivity to anomalies. To mitigate this problem, in this paper, we propose a novel Proxy-bridged Image Reconstruction Network (ProxyAno) for anomaly detection in medical images. Specifically, we use an intermediate proxy to bridge the input image … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 42 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?