Background: Ovarian cancer (OV) is deemed as the most lethal gynecological cancer in women. The aim of this study was construct an effective gene prognostic model for OV patients.Methods: The expression profiles of glycolysis-related genes (GRGs) and clinical data of patients with OV were extracted from The Cancer Genome Atlas (TCGA) database. Univariate, multivariate, and least absolute shrinkage and selection operator Cox regression analyses were conducted, and a prognostic signature based on GRGs was constructed. The predictive ability of the signature was analyzed in training and test sets.Results: Based on nine GRGs (ISG20, CITED2, PYGB, IRS2, ANGPTL4, TGFBI, LHX9, PC, and DDIT4), a gene risk signature was identified to predict the outcome of patients with OV. The signature showed a good prognostic ability for OV, particularly high-grade OV, in the TCGA dataset, with areas under the curve of 0.709, 0.762, and 0.808 for 3-, 5- and 10-year survival, respectively. Similar results were found in the test sets, and the signature was also an independent prognostic factor. Moreover, a nomogram combining the prediction model and clinical factors was constructed.Conclusion: Our study established a nine-GRG risk model and a nomogram to better perform on OV patientsâ survival prediction. The risk model represents a promising and independent prognostic predictor for OV patients. Moreover, our study of GRGs could offer guidance for underlying mechanisms explorations in the future.