“…The task of whole-brain segmentation in particular is challenging due to the complex 3D architecture and spatial dependency between slices, the large number of labels, the size of the scanning volumes (memory requirements), and variability across scanners and subjects. While several deep learning based approaches have been proposed for specific tasks, such as tumor segmentation ( Rani and Vashisth ; Dong et al, 2017 ; Arunachalam and Savarimuthu, 2017 ; Havaei et al, 2017 ; Amin et al, 2018 ; Brainless Glioma , 2018 ), brain lesion segmentation ( Kamnitsas et al, 2017 ; Varghese et al, 2017 ; Rezaei et al, 2017 ; Roa-Barco et al, 2017 ; Chen and Konukoglu, 2018 ), MR image reconstruction ( Jin et al, 2017 ; Mardani et al, 2019 ; Schlemper et al, 2018 ; Yang et al, 2018 ; Dedmari et al, 2018 ), prediction of brain related diseases and their progression ( Payan and Montana, 2015 ; Qi and Tejedor, 2016 ; Hosseini-Asl et al, 2016 ; Lee et al Kim ) or segmentation of a smaller number of brain (sub-)structures ( Zhang et al, 2015 ; Akkus et al, 2017 ; Milletari et al, 2017 ; Fedorov et al, 2017 ; Dolz et al, 2018 ; Thyreau et al, 2018 ; Chen et al, 2018 ; Nogovitsyn et al, 2019 ; Li et al, 2019 ; Sun et al, 2019 ; Ito et al, 2019 ) full brain segmentation into more than 25 classes has - so far - only been achieved by a few groups ( de Brêbisson and Montana, 2015 ; Moeskops et al, 2016 ; Mehta et al, 2017 ; Wachinger et al, 2018 ; Roy et al, 2017 , 2019 ; Jog et al, 2019 ; Huo et al, 2019 ; Coupé et al, 2019 ) - yet with the exception of ( Roy et al, 2019 ) only with direct comparison of segmentation accuracy on a test-set, lacking extensive validations, e.g., of reliability and sensitivity to real neuroanatomical effects.…”