Abstract:In the hyperspace of subcontinua of a compact surface we consider a second order Hausdorff distance. This metric space is compactified in such a way that the stable foliation of a pseudo-Anosov map is naturally identified with a hypercontinuum. We show that negative iterates of a stable arc converges to this hypercontinuum in the considered metric. Some dynamical properties of pseudo-Anosov maps, as topological mixing and the density of stable leaves, are generalized for cw-expansive homeomorphisms of pseudo-A… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.