2017
DOI: 10.1090/proc/13450
|View full text |Cite
|
Sign up to set email alerts
|

Pseudo-Anosov maps and continuum theory

Abstract: In the hyperspace of subcontinua of a compact surface we consider a second order Hausdorff distance. This metric space is compactified in such a way that the stable foliation of a pseudo-Anosov map is naturally identified with a hypercontinuum. We show that negative iterates of a stable arc converges to this hypercontinuum in the considered metric. Some dynamical properties of pseudo-Anosov maps, as topological mixing and the density of stable leaves, are generalized for cw-expansive homeomorphisms of pseudo-A… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 5 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?