“…)[(l p− q)p m,n−k−s−i+1 − pa(p)p ⋆ m,n,k+s+i−1 ] g(m + w)p m,n−k−s−i+1 − qa(p) g(m + j)p m,n−k−s−i+1Using(15), the expression leads toE U 3 g M n s (l) 1 − 1(s ≤ n − 2k − i + 1u ≤ n − k − 2)) − 1(u = n − k) + q1(u = n − k − 1− q)B s (l) ⌊n/k⌋ m=0 ∆g(m + 1)(p ⋆ m,n,k+s+i−1 − p ⋆ m−1,n,k+s+i−1 ) g(m + w)p m,n−k−s−i+1 − qa(p) g(m + j)p m,n−k−s−i+1 From (31), it is easy to see that s (l) 1 − 1(s ≤ n − 2k − i + 1) + k+s+i−qp1(u ≤ n − k − 2)) −1(u=n−k)+q1(u=n−k−1)) +a(p) g(m + w)p m,n−k−s−i+1 − qa(p) g(m + j)p m,n−k−s−i+1 Hence, for g ∈ G X3 ∩ G M n k 1 ,k 2and using(21), we getE U 3 g M n k1,k2 ≤ 2 ∆g (2 + qp)a(p) 2 4(n − k)δ 1 + (2δ + qp)c pa(p) + (n − k)δ + c(3)n,k + qpc(6)n,k q d T V M n−3k−…”