Choice of suitable electrode material is a fundamental step in Li-ion battery (LIB) to achieve enhanced performance. In the present study we have explored the feasibility of phosphorene analogs, i.e. group IV monochalcogenides (SiS, SiSe, GeS, GeSe,SnS and SnSe) monolayers to serve as anode material in LIB by density functional theory(DFT). Our exploratory study indicates lithium binds efficiently to these monolayers of which Li@SiS and Li@SiSe show appreciable stability which are comparable to phosphorene. Zero point energy corrected minimum energy pathway (MEP) for Li diffusion demonstrates high anisotropy for both SiS and SiSe with a low diffusion barrier of ~0.15eV along the zigzag direction.Inclusion of corrections due to quantum effects like the zero point energy (ZPE) and quantum mechanical tunneling (QMT) increase the diffusion rates by 6-10 % at room temperature and become increasingly significant as temperature is reduced (40-55 % increment at T=100K). The calculated theoretical capacity for SiS and SiSe are 445.7 mAhg -1 and 250.44 mAhg -1 respectively which are well above existing commercially available used anode materials. Both SiS and SiSe preserve their structural integrity upon lithiation justifying their role as host material for lithium. A semiconductor → metallic transition is observed upon full lithiation for both. All these exceptional properties including low diffusion barrier, moderate to high specific capacity, low open circuit voltage (OCV), small volume change and good electrical conductivity, suggest that monolayer SiS and SiSe could serve as a promising electrode material in LIB.