This paper aims at experimental investigations of the life limiting mechanisms of regeneratively cooled rocket combustion chambers, especially the so called doghouse effect. In this paper the set up of a cyclic thermo-mechanical fatigue experiment and its results are shown. This experiment has an actively cooled fatigue specimen that is mounted downstream of a subscale GOX-GCH$$_{\text {4}}$$ combustion chamber with rectangular cross section. The specimen is loaded cyclically and inspected after each cycle. The effects of roughness, the use of thermal barrier coatings, the length of the hot gas phase, the oxygen/fuel ratio and the hot gas pressure are shown. In a second experiment the flow in a generic high aspect ratio cooling duct is measured with the Particle Image Velocimetry (PIV) to characterize the basic flow. The main focus of the analysis is on the different recording and processing parameters of the PIV method. Based on this analysis a laser pulse interval and the window size for auto correlation is chosen. Also the repeatability of the measurements is demonstrated. These results are the starting point for future measurements on the roughness effect on heat transfer and pressure loss in a high aspect ratio cooling duct.