Purpose: To evaluate the amide proton transfer (APT), tumor blood flow (TBF), and apparent diffusion coefficient (ADC) combined diagnostic value for differentiating intracranial malignant tumors (MTs) from benign tumors (BTs) in young patients, as defined by the 2021 World Health Organization classification of central nervous system tumors. Methods: Fifteen patients with intracranial MTs and 10 patients with BTs aged 0–30 years underwent MRI with APT, pseudocontinuous arterial spin labeling (pCASL), and diffusion-weighted imaging. All tumors were evaluated through the use of histogram analysis and the Mann–Whitney U test to compare 10 parameters for each sequence between the groups. The diagnostic performance was evaluated using receiver operating characteristic (ROC) curve analysis. Results: The APT maximum, mean, 10th, 25th, 50th, 75th, and 90th percentiles were significantly higher in MTs than in BTs; the TBF minimum (min) was significantly lower in MTs than in BTs; TBF kurtosis was significantly higher in MTs than in BTs; the ADC min, 10th, and 25th percentiles were significantly lower in MTs than in BTs (all p < 0.05). The APT 50th percentile (0.900), TBF min (0.813), and ADC min (0.900) had the highest area under the curve (AUC) values of the parameters in each sequence. The AUC for the combination of these three parameters was 0.933. Conclusions: The combination of APT, TBF, and ADC evaluated through histogram analysis may be useful for differentiating intracranial MTs from BTs in young patients.