We combine the calculus of conormal distributions, in particular the Pull‐Back and Push‐Forward Theorems, with the method of layer potentials to solve the Dirichlet and Neumann problems on half‐spaces. We obtain full asymptotic expansions for the solutions, show that boundary layer potential operators are elements of the full b‐calculus and give a new proof of the classical jump relations. En route, we improve Siegel and Talvila's growth estimates for the modified layer potentials in the case of polyhomogeneous boundary data. The techniques we use here can be generalised to geometrically more complex settings, as for instance the exterior domain of touching domains or domains with fibred cusps. This work is intended to be a first step in a longer program aiming at understanding the method of layer potentials in the setting of certain non‐Lipschitz singularities that can be resolved in the sense of Melrose using manifolds with corners and at applying a matching asymptotics ansatz to singular perturbations of related problems.