1994
DOI: 10.1007/bf02773004
|View full text |Cite
|
Sign up to set email alerts
|

Pseudogroups of isometries of ℝ and Rips’ theorem on free actions on ℝ-trees

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
142
0
12

Year Published

1994
1994
2023
2023

Publication Types

Select...
3
3

Relationship

0
6

Authors

Journals

citations
Cited by 95 publications
(154 citation statements)
references
References 18 publications
0
142
0
12
Order By: Relevance
“…[LP] First, let's fix notations and terminology (see [LP,GLP1,Pau4]). Let < S||R > be a finite presentation of Γ.…”
Section: Approximation By a Geometric Actionmentioning
confidence: 99%
See 3 more Smart Citations
“…[LP] First, let's fix notations and terminology (see [LP,GLP1,Pau4]). Let < S||R > be a finite presentation of Γ.…”
Section: Approximation By a Geometric Actionmentioning
confidence: 99%
“…Like in [GLP1,BF2,Pau4], we are first going to perform some Rips moves on our resolution. These moves are transformations that preserve the action (TΣ Each generator for which none of its bases is reduced to {c} has a unique corresponding generator in D ; and given a singleton having a base equal to {c}, change this base to any of {c i }.…”
Section: Pure Components Of σmentioning
confidence: 99%
See 2 more Smart Citations
“…Sur chacun d'eux, soit toute orbite est finie, soit toute orbite est dense (la composante est alors dite minimale). Les composantes minimales se répartissent en 3 types [GLP1] : -homogènes, les orbites sont les mêmes que celles d'un groupe d'isométries (Définition 3.2), -échanges d'intervalles, -exotiques, dont l'existence a été mise en évidence par G. Levitt [Lev3].…”
unclassified