2014
DOI: 10.1142/s0217732314501430
|View full text |Cite
|
Sign up to set email alerts
|

Pseudoharmonic oscillator in quantum mechanics with a minimal length

Abstract: The pseudoharmonic oscillator potential is studied in non relativistic quantum mechanics with a generalized uncertainty principle characterized by the existence of a minimal length scale, (∆x) min = √ 5β. By using a perturbative approach, we derive an analytical expression of the energy spectrum in the first order of the minimal length parameter β. We investigate the effect of this fundamental length on the vibration-rotation energy levels of diatomic molecules through this potential function interaction. We e… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
13
0

Year Published

2015
2015
2024
2024

Publication Types

Select...
6

Relationship

3
3

Authors

Journals

citations
Cited by 12 publications
(13 citation statements)
references
References 49 publications
0
13
0
Order By: Relevance
“…Let us consider the pseudoharmonic oscillator potential [ 1–16 ] V3normalD()r=Derrerer2, where r is the internuclear distance between diatomic molecules. Therefore, the effective pair of isospectral potentials in one dimension is lefttrueV1D=w2w+αw, lefttruetrueV̂1D=w2w+αw2d2dr2lnλ+, where lefttrue=zL+32ΓL+32false∑j=0zjj!L+32+j,z=italicar2,w=arL+1r,L=12+ll+1+14+a2rnormale4,a=…”
Section: Mathematical Model To Construct a Family Of Isospectral Potementioning
confidence: 99%
See 1 more Smart Citation
“…Let us consider the pseudoharmonic oscillator potential [ 1–16 ] V3normalD()r=Derrerer2, where r is the internuclear distance between diatomic molecules. Therefore, the effective pair of isospectral potentials in one dimension is lefttrueV1D=w2w+αw, lefttruetrueV̂1D=w2w+αw2d2dr2lnλ+, where lefttrue=zL+32ΓL+32false∑j=0zjj!L+32+j,z=italicar2,w=arL+1r,L=12+ll+1+14+a2rnormale4,a=…”
Section: Mathematical Model To Construct a Family Of Isospectral Potementioning
confidence: 99%
“…We have found some published papers where this potential was considered with and without θ-dependent potential. [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16] Likewise, some oscillator potentials that are closely related to this potential have already been studied a few years ago. [17,18] Recently, bound-state solutions have been obtained for the Kratzer potential, [19,20] Morse, Pöschl-Teller potential, [21] Deng-Fan-Eckart potential, [22] and Aharanov-Bohm magnetic field, [18,19,23] and some of them have been investigated for information theoretic measures and the thermal properties of some molecules.…”
Section: Introductionmentioning
confidence: 99%
“…For this purpose, following Ref. [68], we use the fact that the dimensionless parameter γ, in Eq. (31), is so large for most molecules (γ ≫ 1) [44], we may then expand E nℓ , given by Eq.…”
Section: An Application:vibration-rotation Of Diatomic Moleculesmentioning
confidence: 99%
“…The minimal length seems to depend on the energy scale of the problem and might therefore characterize the size of the system under study [13,26]. The latter finding was behind the motivation of our recent investigations [1,2] on the GUP effects in diatomic molecules, because the spatial extension of these systems is relatively large, and the effect of the minimal length may clearly manifest.…”
Section: Introductionmentioning
confidence: 99%
“…Here, we review the main results obtained in [1,2]: We give the expression of the vibration-rotation energy spectrum of diatomic molecules in the presence of a minimal length by studying the deformed Schrödinger equation with the two potentials. In both cases, we apply the obtained formulas to compute the spectroscopic constants of diatomic molecules and investigate the effect of the GUP on these constants.…”
Section: Introductionmentioning
confidence: 99%