BackgroundThe COVID-19 pandemic has exacerbated the ongoing crisis in psychiatric and psychological care, contributing to what we have identified as a new psychological and psychiatric pandemic. Psychotherapy is an effective method for easing the psychological suffering experienced also by the various impacts of COVID-19. This treatment can be examined from a neurological perspective, through the application of brain imaging techniques. Specifically, the meta-analysis of imaging studies can aid in expanding researchers' understanding of the many beneficial applications of psychotherapy.ObjectivesWe examined the functional brain changes accompanying different mental disorders with functional Magnetic Resonance Imaging (fMRI), through a meta-analysis, and systematic review in order to better understand the general neural mechanism involved in psychotherapy and the potential neural difference between psychodynamic and non-psychodynamic approaches.Data sourcesThe Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were employed for our systematic review and meta-analysis. We conducted a computer-based literature search, following the Population, Intervention, Comparison and Outcomes (PICO) approach, to retrieve all published articles in English regarding the above-described topics from PubMed (MEDLINE), Scopus, and Web of Science.Study eligibility criteria, participants, and interventionsWe combined terms related to psychotherapy and fMRI: (“psychotherapy” [All Fields] OR “psychotherapy” [MeSH Terms] OR “psychotherapy” [All Fields] OR “psychotherapies” [All Fields] OR “psychotherapy s” [All Fields]) AND (“magnetic resonance imaging” [MeSH Terms]) OR (“magnetic”[All Fields] AND “resonance”[All Fields] AND “imaging”[All Fields]) OR (“magnetic resonance imaging”[All Fields] OR “fmri”[All Fields]). We considered (1) whole brain fMRI studies; (2) studies in which participants have been involved in a clinical trial with psychotherapy sessions, with pre/post fMRI; (3) fMRI results presented in coordinate-based (x, y, and z) in MNI or Talairach space; (4) presence of neuropsychiatric patients. The exclusion criteria were: (1) systematic review or meta-analysis; (2) behavioral study; (3) single-case MRI or fMRI study; and (4) other imaging techniques (i.e., PET, SPECT) or EEG.ResultsAfter duplicates removal and assessment of the content of each published study, we included 36 sources. The map including all studies that assessed longitudinal differences in brain activity showed two homogeneous clusters in the left inferior frontal gyrus, and caudally involving the anterior insular cortex (p < 0.0001, corr.). Similarly, studies that assessed psychotherapy-related longitudinal changes using emotional or cognitive tasks (TASK map) showed a left-sided homogeneity in the anterior insula (p < 0.000) extending to Broca's area of the inferior frontal gyrus (p < 0.0001) and the superior frontal gyrus (p < 0.0001). Studies that applied psychodynamic psychotherapy showed Family-Wise Error (FWE) cluster-corrected (p < 0.05) homogeneity values in the right superior and inferior frontal gyri, with a small cluster in the putamen. No FWE-corrected homogeneity foci were observed for Mindful- based and cognitive behavioral therapy psychotherapy. In both pre- and post-therapy results, studies showed two bilateral clusters in the dorsal anterior insulae (p = 0.00001 and p = 0.00003, respectively) and involvement of the medial superior frontal gyrus (p = 0.0002).LimitationsSubjective experiences, such as an individual's response to therapy, are intrinsically challenging to quantify as objective, factual realities. Brain changes observed both pre- and post-therapy could be related to other factors, not necessary to the specific treatment received. Therapeutic modalities and study designs are generally heterogeneous. Differences exist in sample characteristics, such as the specificity of the disorder and number and duration of sessions. Moreover, the sample size is relatively small, particularly due to the paucity of studies in this field and the little contribution of PDT.Conclusions and implications of key findingsAll psychological interventions seem to influence the brain from a functional point of view, showing their efficacy from a neurological perspective. Frontal, prefrontal regions, insular cortex, superior and inferior frontal gyrus, and putamen seem involved in these neural changes, with the psychodynamic more linked to the latter three regions.