Interocular crosstalk has a significant undesirable effect on the quality of 3D displays that utilize horizontal disparity. This study investigates observer sensitivity when judging the depth order of two horizontally aligned dots on a 3D display and assesses 3D display uniformity by obtaining this index for various locations on the display. Visual stimulus is two horizontally disparate dots, with nine steps of horizontal disparity. A dot pair is presented at five screen locations. An observer wearing polarized glasses sits 57 cm from a display, observes it through a slit, and judges the depth order of two dots. Each of the 20 observers responds 16 times per disparate dot pair, and we calculate the rate at which observers judge the dot on the right to be nearer in 16 trials for each display, screen location, and disparity. We then plot the rate as a function of the left-right dot disparity and fit a psychometric function to the plot. A curve slope at a response probability of 50% is used to gauge the sensitivity of depth order judgment. Results show the depth sensitivity variation across the display surface depends on interocular-crosstalk variation across the display thus its uniformity of the display.