Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In vitro diagnostics (IVD) makes clinical diagnosis rapid, simple, and noninvasive to patients, playing a crucial role in the early diagnosis and monitoring of diseases. Metabolic biomarkers are closely correlated to the phenotype of diseases. However, most IVD platforms are constrained by the sensitivity and throughput of assay. In recent years, noble‐metal‐nanoparticle (NMNP)‐assisted laser desorption/ionization mass spectrometry (LDI MS) has generated major advances in metabolite analysis, significantly improving the sensitivity, accuracy, and throughput of IVD due to the unique optical and electrical properties of NMNPs. This review systematically assesses the development of NMNPs as LDI MS matrices in the detection of metabolites for IVD application. The analysis of several NMNP structures, such as core–shell, porous, and 2D nanoparticles, elucidates their significant contribution to the enhancement of MS performance. Furthermore, the recent advancements in the application of NMNPs for diagnosing various systemic diseases are summarized. Finally, the prospects and challenges of NMNP‐assisted MS for IVD are discussed. This review elucidates the roles of NMNPs' structure in enhancing MS‐based metabolic detection and provides an overview of various IVD applications, consequently offering comprehensive insights for researchers and developers in this field.
In vitro diagnostics (IVD) makes clinical diagnosis rapid, simple, and noninvasive to patients, playing a crucial role in the early diagnosis and monitoring of diseases. Metabolic biomarkers are closely correlated to the phenotype of diseases. However, most IVD platforms are constrained by the sensitivity and throughput of assay. In recent years, noble‐metal‐nanoparticle (NMNP)‐assisted laser desorption/ionization mass spectrometry (LDI MS) has generated major advances in metabolite analysis, significantly improving the sensitivity, accuracy, and throughput of IVD due to the unique optical and electrical properties of NMNPs. This review systematically assesses the development of NMNPs as LDI MS matrices in the detection of metabolites for IVD application. The analysis of several NMNP structures, such as core–shell, porous, and 2D nanoparticles, elucidates their significant contribution to the enhancement of MS performance. Furthermore, the recent advancements in the application of NMNPs for diagnosing various systemic diseases are summarized. Finally, the prospects and challenges of NMNP‐assisted MS for IVD are discussed. This review elucidates the roles of NMNPs' structure in enhancing MS‐based metabolic detection and provides an overview of various IVD applications, consequently offering comprehensive insights for researchers and developers in this field.
Background and Aims: Biliary tract cancers (BTCs) are aggressive gastrointestinal malignancies characterized by a dismal 5-year overall survival rate less than 20%. Current diagnostic modalities suffer from limitations regarding sensitivity and specificity. This study aimed to develop a bile metabolite-based platform for precise discrimination between malignant and benign biliary diseases. Approach and Results: Samples were collected from 336 patients with BTC or benign biliary diseases across three independent cohorts. Untargeted metabolic fingerprinting was performed on 300 bile samples using novel nanoparticle-enhanced laser desorption/ionization mass spectrometry (NPELDI MS). Subsequently, a diagnostic assay was developed based on the exploratory cohort using a selected bile metabolic biomarker panel, with performance evaluated in the validation cohort. Further external validation of disease-specific metabolites from bile samples was conducted in a prospective cohort (n=36) using quantitative analysis. As a result, we established a novel bile-based assay, BileMet, for the rapid and precise detection of malignancies in the biliary tract system with an area under the curve of 0.891. We identified 6 metabolite biomarker candidates and discovered the critical role of the chenodeoxycholic acid glycine conjugate as a protective metabolite associated with BTC. Conclusions: Our findings confirmed the improved diagnostic capabilities of BileMet assay in a clinical setting. If applied, the BileMet assay enables intraoperative testing and fast medical decision-making for cases with suspected malignancy where brush cytology detection fails to support malignancy, ultimately reducing the economic burden by over 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.