Three-way catalyst (TWC) is the mainstream technology for stoichiometric natural gas vehicle gas emission purification to meet the China VI emission standard for heavy-duty vehicles. Due to the high price of Pd-Rh TWC widely used at present, it is of great significance to develop cheaper Pt-only catalysts as substitutes. However, there are few studies on Pt-only TWC, especially for natural gas vehicles. It remains a formidable challenge to develop Pt-only TWC with excellent activity and stability. In this study, we significantly improved the catalytic performance of Pt/CeO2 TWC through thermal treatment, especially steam treatment at 800 °C, and used XRD, TEM, H2-TPR, and XPS techniques to investigate how Pt/CeO2 can be activated via these treatments. Our results suggested that after these treatments, CeO2 crystallites sintered slightly, while platinum particles remained highly dispersed. Moreover, these treatments also weakened the Pt-CeO2 interaction, promoted the formation of oxygen vacancies in CeO2 support, and generated a new type of active surface oxygen in the vicinity of Ptδ+, thus improving the activity of the catalyst. After 800 °C steam treatment, the T50 of CH4 and NO decreased by 31 and 36 °C, respectively. The results obtained in this study provide implications for the synthesis of efficient Pt-based catalysts.