Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Access to DNA is the first level of control in regulating gene transcription, a control that is also critical for maintaining DNA integrity. Cellular senescence is characterized by profound transcriptional rearrangements and accumulation of DNA lesions. Here, we discovered an epigenetic complex between HDAC4 and HDAC1/HDAC2 that is involved in the erase of H2BK120 acetylation. The HDAC4/HDAC1/HDAC2 complex modulates the efficiency of DNA repair by homologous recombination, through dynamic deacetylation of H2BK120. Deficiency of HDAC4 leads to accumulation of H2BK120ac, impaired recruitment of BRCA1 and CtIP to the site of lesions, accumulation of damaged DNA and senescence. In senescent cells this complex is disassembled because of increased proteasomal degradation of HDAC4. Forced expression of HDAC4 during RAS-induced senescence reduces the genomic spread of γH2AX. It also affects H2BK120ac levels, which are increased in DNA-damaged regions that accumulate during RAS-induced senescence. In summary, degradation of HDAC4 during senescence causes the accumulation of damaged DNA and contributes to the activation of the transcriptional program controlled by super-enhancers that maintains senescence.
Access to DNA is the first level of control in regulating gene transcription, a control that is also critical for maintaining DNA integrity. Cellular senescence is characterized by profound transcriptional rearrangements and accumulation of DNA lesions. Here, we discovered an epigenetic complex between HDAC4 and HDAC1/HDAC2 that is involved in the erase of H2BK120 acetylation. The HDAC4/HDAC1/HDAC2 complex modulates the efficiency of DNA repair by homologous recombination, through dynamic deacetylation of H2BK120. Deficiency of HDAC4 leads to accumulation of H2BK120ac, impaired recruitment of BRCA1 and CtIP to the site of lesions, accumulation of damaged DNA and senescence. In senescent cells this complex is disassembled because of increased proteasomal degradation of HDAC4. Forced expression of HDAC4 during RAS-induced senescence reduces the genomic spread of γH2AX. It also affects H2BK120ac levels, which are increased in DNA-damaged regions that accumulate during RAS-induced senescence. In summary, degradation of HDAC4 during senescence causes the accumulation of damaged DNA and contributes to the activation of the transcriptional program controlled by super-enhancers that maintains senescence.
Objectives Human cancer is considered to be an important cause of death worldwide. Polypyrimidine tract binding protein 1 (PTBP1) is emerging as a powerful pro-oncogenic factor in bladder and liver cancer; however, no pan-cancer analysis is presently available. Our study aimed to explore PTBP1 expression profiles, prognostic immunological value, and biological functions across various cancers. Methods We conducted a comprehensive analysis using multi-omics bioinformatics from public databases, including TIMER, GEPIA2, ProteinAtlas, Kaplan-Meier Plotter, PrognoScan, cBioPortal, STRING, ENCORI, TargetScan, and DAVID. Results We found that PTBP1 was overexpressed across multiple cancer types. qRT-PCR results demonstrated that the PTBP1 mRNA was significantly up-regulated in lung adenocarcinoma (LUAD), colon cancer (COAD), and melanoma (SKCM) cell lines, as well as in melanoma-forming mouse models. Higher PTBP1 mRNA levels were associated with poorer survival probabilities in several cancer types. PTBP1 genetic alterations were related to amplification and mutation. PTBP1 significantly modulates tumor immunity by enhancing Tregs infiltration and reducing CD8+ T cell activity, promoting immune evasion and adversely affecting cancer prognosis. GO and KEGG pathway analyses implied that PTBP1 may participate in RNA metabolism, the spliceosome, the cell cycle, and the p53 signaling pathway in cancer development. Conclusion Our study is the first to demonstrate the oncogenic role of PTBP1 in a pan-cancer context. PTBP1 might serve as a new biomarker for prognostic prediction and immune cell infiltration across cancers in the future.
This study aimed to verify a novel potential indicator of disease progression in acute myeloid leukaemia (AML) patients. Bone marrow samples were collected from 27 AML patients and 27 controls without haematological malignancies. Polypyrimidine tract binding protein 1 (PTBP1) expression in bone marrow samples was measured, and the association of PTBP1 with the French-American-British (FAB) classification, cytogenetics, risk stratification, and complete remission (CR) rate was analysed. The correlation between PTBP1 and Ki-67/p53 expression in AML patients was ultimately evaluated. The results showed that PTBP1 mRNA and protein levels were greater in AML patients than in controls. PTBP1 expression was able to distinguish between AML patients and controls (area under the curve, 0.8601; 95% CI, 0.7632-0.9570). Furthermore, PTBP1 expression was associated with an increased frequency of internal tandem duplication mutations within FMS-like tyrosine kinase-3 (FLT3-ITD) and a complex karyotype (CK), while PTBP1 expression was not correlated with FAB classification, monosomal karyotype, isolated biallelic CCAAT/enhancer-binding protein α (CEBPA) mutation, or nucleophosmin 1 (NPM1) mutation in patients with AML. Moreover, PTBP1 expression was associated with a poorer prognosis according to risk stratification and a lower CR rate in AML patients. In addition, PTBP1 expression was positively correlated with the expression of the proliferation marker Ki-67 and negatively correlated with the expression of the apoptosis marker p53 in AML patients. Overall, PTBP1 is a viable biomarker that contributes to the risk prediction and the determination of potential drug targets for AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.