Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Single‐atom catalysts (SACs) have rapidly become a hot topic in photocatalytic research due to their unique physical and chemical properties, high activity, and high selectivity. Among many semiconductor carriers, the special structure of carbon nitride (C3N4) perfectly meets the substrate requirements for stabilizing SACs; they can also compensate for the photocatalytic defects of C3N4 materials by modifying energy bands and electronic structures. Therefore, developing advanced C3N4‐based SACs is of great significance. In this review, we focus on elucidating efficient preparation strategies and the burgeoning photocatalytic applications of C3N4‐based SACs. We also outline prospective strategies for enhancing the performance of SACs and C3N4‐based SACs in the future. A comprehensive array of methodologies is presented for identifying and characterizing C3N4‐based SACs. This includes an exploration of potential atomic catalytic mechanisms through the simulation and regulation of atomic catalytic behaviors and the synergistic effects of single or multiple sites. Subsequently, a forward‐looking perspective is adopted to contemplate the future prospects and challenges associated with C3N4‐based SACs. This encompasses considerations, such as atomic loading, regulatory design, and the integration of machine learning techniques. It is anticipated that this review will stimulate novel insights into the synthesis of high‐load and durable SACs, thereby providing theoretical groundwork for scalable and controllable applications in the field.
Single‐atom catalysts (SACs) have rapidly become a hot topic in photocatalytic research due to their unique physical and chemical properties, high activity, and high selectivity. Among many semiconductor carriers, the special structure of carbon nitride (C3N4) perfectly meets the substrate requirements for stabilizing SACs; they can also compensate for the photocatalytic defects of C3N4 materials by modifying energy bands and electronic structures. Therefore, developing advanced C3N4‐based SACs is of great significance. In this review, we focus on elucidating efficient preparation strategies and the burgeoning photocatalytic applications of C3N4‐based SACs. We also outline prospective strategies for enhancing the performance of SACs and C3N4‐based SACs in the future. A comprehensive array of methodologies is presented for identifying and characterizing C3N4‐based SACs. This includes an exploration of potential atomic catalytic mechanisms through the simulation and regulation of atomic catalytic behaviors and the synergistic effects of single or multiple sites. Subsequently, a forward‐looking perspective is adopted to contemplate the future prospects and challenges associated with C3N4‐based SACs. This encompasses considerations, such as atomic loading, regulatory design, and the integration of machine learning techniques. It is anticipated that this review will stimulate novel insights into the synthesis of high‐load and durable SACs, thereby providing theoretical groundwork for scalable and controllable applications in the field.
In response to the challenges of food spoilage and water pollution caused by pathogenic microorganisms, CeO2/g-C3N4 nanocomposites were synthesized via one-step calcination using thiourea and urea as precursors. Steady-state photoluminescence (PL) spectroscopy analysis demonstrated that 8 wt% CeO2/g-C3N4 exhibited superior electron–hole separation efficiency. Quantitative antimicrobial assays demonstrated that the nanocomposites displayed enhanced bactericidal activity against Escherichia coli, Ralstonia solanacearum, and Staphylococcus aureus. Electron paramagnetic resonance (EPR) spectroscopy analysis verified the generation of hydroxyl radicals (·OH) and superoxide radicals (·O2−) during the photo-Fenton process utilizing CeO2/g-C3N4 nanocomposites. Additionally, 8 wt% CeO2/g-C3N4 nanocomposites demonstrated enhanced photocatalytic degradation of rhodamine B (RhB) and tetracycline hydrochloride (TC) under photo-Fenton conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.