This research explores the aberrant expression of the long non-coding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) in pterygium. A competitive endogenous RNA (ceRNA) network was constructed to elucidate the molecular mechanisms in pterygium. METHODS. We obtained the differentially expressed mRNAs based on three datasets (GSE2513, GSE51995, and GSE83627), and summarized the differentially expressed miRNAs (DEmiRs) and differentially expressed lncRNAs (DELs) data by published literature. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, protein-protein interaction (PPI), and gene set enrichment analysis (GSEA) analysis were performed. DEmiRs were verified in GSE21346, and the regulatory network of hub mRNAs, DELs, and DEmiRs were constructed. RESULTS. Overall, 40 upregulated and 40 downregulated differentially expressed genes (DEGs) were obtained. The KEGG enrichment showed the DEGs mainly involved in extracellular matrix (ECM)-receptor interaction, focal adhesion, and PI3K-Akt signaling pathway. The GSEA results showed that cornification, keratinization, and cornified envelope were significantly enriched. The validation outcome confirmed six upregulated DEmiRs (miR-766-3p, miR-184, miR-143-3p, miR-138-5p, miR-518b, and miR-1236-3p) and two downregulated DEmiRs (miR-200b-3p and miR-200a-3p). Then, a ceRNA regulatory network was constructed with 22 upregulated and 15 downregulated DEmiRs, 4 downregulated DELs, and 26 upregulated and 33 downregulated DEGs. The network showed that lncRNA SNHG1/miR-766-3p/FOS and some miRNA-mRNA axes were dysregulated in pterygium. CONCLUSIONS. Our study provides a novel perspective on the regulatory mechanism of pterygium, and lncRNA SNHG1/miR-766-3p/FOS may contribute to pterygium development.