Public debt forecasts and machine learning: the Italian case
Edgardo Sica,
Hazar Altınbaş,
Gaetano Gabriele Marini
Abstract:PurposePublic debt forecasts represent a key policy issue. Many methodologies have been employed to predict debt sustainability, including dynamic stochastic general equilibrium models, the stock flow consistent method, the structural vector autoregressive model and, more recently, the neuro-fuzzy method. Despite their widespread application in the empirical literature, all of these approaches exhibit shortcomings that limit their utility. The present research adopts a different approach to public debt forecas… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.