2022
DOI: 10.48048/tis.2022.2147
|View full text |Cite
|
Sign up to set email alerts
|

Public Key Cryptosystem Based on Singular Matrix

Abstract: The algorithms such as RSA, ElGamal and ECC work on integers. Commutative operations on integer multiplication leave these algorithms vulnerable to attack by eavesdroppers. For this reason, experts develop the concept of non-commutative algebra in the public key cryptosystem by adding non-commutative properties to groups, semirings, semiring division, matrices and matrix decomposition. However, the key generating process in some public key cryptosystems is quite complicated to carry out. Therefore, in previous… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 12 publications
0
1
0
1
Order By: Relevance
“…Pada faktanya, semua sistem kriptografi kunci publik berbasis grup komutatif rentan terhadap quantum algorithms attack. Untuk itu para pakar mengembangkan sistem kriptografi kunci publik berbasis grup non-komutatif yaitu konsep matriks atas ring dan lapangan [1][2][3][4][5][6][7][8], matriks khusus [9][10][11], dan dekomposisi matriks [12][13].…”
Section: Pendahuluanunclassified
“…Pada faktanya, semua sistem kriptografi kunci publik berbasis grup komutatif rentan terhadap quantum algorithms attack. Untuk itu para pakar mengembangkan sistem kriptografi kunci publik berbasis grup non-komutatif yaitu konsep matriks atas ring dan lapangan [1][2][3][4][5][6][7][8], matriks khusus [9][10][11], dan dekomposisi matriks [12][13].…”
Section: Pendahuluanunclassified
“…The lineage of matrix-based cryptosystems, stretching back to foundational works such as [1], has been marked by continual advancements. Diverse matrix forms were incorporated, ranging from singular [2,3] and non-singular matrices [4] to matrices over bit strings [5]; Tribonacci matrices [6]; Hadamar matrices [7]; non-negative [8] and lattice matrices [9]. Tropical matrices are also of interest ( [10][11][12][13][14][15]).…”
Section: Introductionmentioning
confidence: 99%