One in every five occupational deaths occurs in the construction sector. A proactive approach for improving on-site safety is identifying and analyzing accident precursors, such as near-misses, that provide early warnings of accidents. Despite the importance of near-misses, they are frequently left unreported and unrecorded in the construction sector. The adoption of modern technologies can prevent accidents by automated data collection and analysis. This study aims to develop near-miss detection metrics to facilitate the automated detection of near-misses through sensors. The study adopted a mixed method approach including both qualitative and quantitative approaches. First, a quantifiable definition of near-misses was developed from the literature. Hazards, accidents, and the causes of accidents were identified. Through empirical and statistical analyses of accidents from the OSHA repository, combinations of unsafe acts and conditions responsible for a near-miss were identified. The identified factors were analyzed using a frequency analysis, correlation, and a lambda analysis. The results revealed twelve significant near-misses, such as A1—approach to restricted areas and C2—unguarded floor/roof openings, A5—equipment and tool inspection was incomplete and C8—unsafely positioned ladders and scaffolds, A2—no or improper use of PPE and C2—unguarded floor or roof openings, etc. Lastly, measurable data required by sensors for autonomous detection of near-misses were determined. The developed metric set the basis for automating near-miss reporting and documentation using modern sensing technology to improve construction safety. This study contributes to improving construction safety by addressing the underreporting of near-miss events. Overall, the developed metrics lay the groundwork for enhancing construction safety through automated near-miss reporting and documentation. Furthermore, it helps for the establishment of safety management schemes in the construction industry, specifically in identifying near-misses. This research offers valuable insight into developing guidelines for safety managers to improve near-miss reporting and detection on construction sites. In sum, the findings can be valuable for other industries also looking to establish or assess their own safety management systems.