Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated enzyme (Cas) is a naturally occurring genome editing tool adopted from the prokaryotic adaptive immune defense system. Currently, CRISPR/Cas9‐based genome editing has been becoming one of the most promising tools for treating human genetic diseases, including cardiovascular diseases, neuro‐disorders, and cancers. As the quick modification of the CRISPR/Cas9 system, including delivery system, CRISPR/Cas9‐based gene therapy has been extensively studied in preclinic and clinic treatments. CRISPR/Cas genome editing is also a robust tool to create animal genetic models for studying and treating human genetic disorders, particularly diseases associated with point mutations. However, significant challenges also remain before CRISPR/Cas technology can be routinely employed in the clinic for treating different genetic diseases, which include toxicity and immune response of treated cells to CRISPR/Cas component, highly throughput delivery method, and potential off‐target impact. The off‐target effect is one of the major concerns for CRISPR/Cas9 gene therapy, more research should be focused on limiting this impact by designing high specific gRNAs and using high specificity of Cas enzymes. Modifying the CRISPR/Cas9 delivery method not only targets a specific tissue/cell but also potentially limits the off‐target impact.
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated enzyme (Cas) is a naturally occurring genome editing tool adopted from the prokaryotic adaptive immune defense system. Currently, CRISPR/Cas9‐based genome editing has been becoming one of the most promising tools for treating human genetic diseases, including cardiovascular diseases, neuro‐disorders, and cancers. As the quick modification of the CRISPR/Cas9 system, including delivery system, CRISPR/Cas9‐based gene therapy has been extensively studied in preclinic and clinic treatments. CRISPR/Cas genome editing is also a robust tool to create animal genetic models for studying and treating human genetic disorders, particularly diseases associated with point mutations. However, significant challenges also remain before CRISPR/Cas technology can be routinely employed in the clinic for treating different genetic diseases, which include toxicity and immune response of treated cells to CRISPR/Cas component, highly throughput delivery method, and potential off‐target impact. The off‐target effect is one of the major concerns for CRISPR/Cas9 gene therapy, more research should be focused on limiting this impact by designing high specific gRNAs and using high specificity of Cas enzymes. Modifying the CRISPR/Cas9 delivery method not only targets a specific tissue/cell but also potentially limits the off‐target impact.
Mitochondrial base editing tools hold great promise for the investigation and treatment of mitochondrial diseases. Mitochondrial DNA base editors (mitoBEs) integrate a programmable transcription-activator-like effector (TALE) protein with single-stranded DNA deaminase (TadA8e-V106W, APOBEC1, etc .) and nickase (MutH, Nt.BspD6I(C), etc .) to achieve heightened precision and efficiency in mitochondrial base editing. This innovative mitochondrial base editing tool exhibits a number of advantages, including strand-selectivity for editing, high efficiency, and the capacity to perform diverse types of base editing on the mitochondrial genome by employing various deaminases. In this context, we provide a detailed experimental protocol for mitoBEs to assist others in achieving proficient mitochondrial base editing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.