2022
DOI: 10.3389/fpls.2022.1012216
|View full text |Cite
|
Sign up to set email alerts
|

Puccinia striiformis f. sp. tritici effectors in wheat immune responses

Abstract: The obligate biotrophic fungus Puccinia striiformis f. sp. tritici, which causes yellow (stripe) rust disease, is among the leading biological agents resulting in tremendous yield losses on global wheat productions per annum. The combatting strategies include, but are not limited to, fungicide applications and the development of resistant cultivars. However, evolutionary pressure drives rapid changes, especially in its “effectorome” repertoire, thus allowing pathogens to evade and breach resistance. The extrac… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
5
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
7
1
1

Relationship

1
8

Authors

Journals

citations
Cited by 10 publications
(5 citation statements)
references
References 132 publications
0
5
0
Order By: Relevance
“…Plants are always prone to interact with various microbes in different ways which include phytopathogenic and symbiotic associations. In phytopathogenic associations fungi interact with different lifestyles, namely necrotrophic (e.g., Alternaria alternata, A. solani, A. brassicae, Aspergillus flavus, Bipolaris sorokiniana, Botrytis cinerea, Claviceps gigantean, Colletotrichum beeveri, C. gloeosporioides, C. graminicola, C. musae, Sclerotinia sclerotiorum, Stenocarpella maydis, Zymoseptoria tritici) [4][5][6][7][8][9][10][11][12][13][14][15][16]; biotrophic (e.g., Blumeria graminis, Cladosporium fulvum, Hemileia vastatrix, Melampsora lini, Phakopsora pachyrhizi, Puccinia arachidis, Puccinia graminis, Puccinia kuehnii, Puccinia striiformis, Sporisorium scitamineum, Ustilago maydis) [17][18][19][20][21][22][23][24][25][26][27][28]; and hemibiotrophic (e.g., Colletotrichum higginsianum, C. trifolii, Fusarium equiseti, F. oxysporum, F. sacchari, Ganoderma boninense, Magnaporthe oryzae, Phomopsis longicolla) [29][30][31][32][33][34][35][36]. A plethora of fungi also live as symbiotic, e.g., Funneliformis mosseae, Glomus albidum, G. etunicatum, G. mosseae, G. fasciculatum, Glomus albidum, G. etunicatum, G. mosseae, G. fasciculatum, Glomus mosseae, Trichoderma virens [37][38][39][40][41]…”
Section: Introductionmentioning
confidence: 99%
“…Plants are always prone to interact with various microbes in different ways which include phytopathogenic and symbiotic associations. In phytopathogenic associations fungi interact with different lifestyles, namely necrotrophic (e.g., Alternaria alternata, A. solani, A. brassicae, Aspergillus flavus, Bipolaris sorokiniana, Botrytis cinerea, Claviceps gigantean, Colletotrichum beeveri, C. gloeosporioides, C. graminicola, C. musae, Sclerotinia sclerotiorum, Stenocarpella maydis, Zymoseptoria tritici) [4][5][6][7][8][9][10][11][12][13][14][15][16]; biotrophic (e.g., Blumeria graminis, Cladosporium fulvum, Hemileia vastatrix, Melampsora lini, Phakopsora pachyrhizi, Puccinia arachidis, Puccinia graminis, Puccinia kuehnii, Puccinia striiformis, Sporisorium scitamineum, Ustilago maydis) [17][18][19][20][21][22][23][24][25][26][27][28]; and hemibiotrophic (e.g., Colletotrichum higginsianum, C. trifolii, Fusarium equiseti, F. oxysporum, F. sacchari, Ganoderma boninense, Magnaporthe oryzae, Phomopsis longicolla) [29][30][31][32][33][34][35][36]. A plethora of fungi also live as symbiotic, e.g., Funneliformis mosseae, Glomus albidum, G. etunicatum, G. mosseae, G. fasciculatum, Glomus albidum, G. etunicatum, G. mosseae, G. fasciculatum, Glomus mosseae, Trichoderma virens [37][38][39][40][41]…”
Section: Introductionmentioning
confidence: 99%
“…Regarding the omics studies on the interaction between Pst and wheat, with the development of sequencing technologies, improved genome assembly and annotation for wheat [41] and Pst (https://www.ncbi.nlm.nih.gov/datasets/genome/?taxon=27350 (accessed on 15 February 2024)) have led to the accumulation of data. Our research previously reviewed some of the transcriptome, microarray, and proteome omics analyses of wheat and Pst, analyzing potential Pst effector candidates [42,43]. Recently, the study of the pan-genome of Pst has laid the foundation for the population genetics and comparative genomics research of the Pst population [44].…”
Section: Discussionmentioning
confidence: 99%
“…Its pathogenic spores can be transmitted over long distance via high-altitude airflow, which mainly harm the wheat leaves and sheaths by destroying the synthesis of chlorophyll. This destruction causes the decrease of photosynthetic capacity, and hinders the grain filling, leading to the probabilistic estimated damage of 5.47 million tons of grain each year [ 2 , 3 ]. Moreover, the rapid evolution and spread of new pathogenic stripe rust races often make the newly made wheat varieties lose their expected resistance [ 4 , 5 ].…”
Section: Introductionmentioning
confidence: 99%