Disruption of pulmonary endothelial permeability and associated barrier integrity increase the severity of acute respiratory distress syndrome (ARDS). This study investigated the potential ability of the human immunodeficiency virus-1 (HIV-1) integrase inhibitor raltegravir to protect against acute lung injury (ALI) and the underlying mechanisms. Accordingly, the impact of raltegravir treatment on an in vitro lipopolysaccharide (LPS)-stimulated human pulmonary microvascular endothelial cell (HPMEC) model of ALI and an in vivo LPS-induced two-hit ALI rat model was examined. In the rat model system, raltegravir treatment alleviated ALI-associated histopathological changes, reduced microvascular permeability, decreased Evans blue dye extravasation, suppressed the expression of inflammatory proteins including HMGB1, TLR4, p-NF-kB, NLRP3, and MPO, and promoted the upregulation of protective proteins including claudin 18.1, VE-cadherin, and aquaporin 5 as measured via western blotting. Immunohistochemical staining further confirmed the ability of raltegravir treatment to reverse LPS-induced pulmonary changes in NLRP3, claudin 18.1, and aquaporin 5 expression. Furthermore, in vitro analyses of HPMECs reaffirmed the ability of raltegravir to attenuate LPS-induced declines in VE-cadherin and claudin 18.1 expression while simultaneously inhibiting NLRP3 activation and reducing the expression of HMGB1, TLR4, and NF-kB, thus decreasing overall vascular permeability. Overall, our findings suggested that raltegravir may represent a viable approach to treating experimental ALI that functions by maintaining pulmonary microvascular integrity.